Menoufia University

Faculty of Engineering-Shebin Elkom

Prod. Eng. & Mech. Design Department

First Semester Examination-2014/2015

Date of Exam: 14/1/2015

المامعة العنوفية

Subject: Applied Mechanics

Code: PRE 117

Year: First Elect.Department

Time Allowed: 3 hours
Total Marks: 60 marks

Answer all the following questions:

Question No.1 (14 marks)

Draw the shear force and bending moment diagrams for the beam shown in Fig.(1).

Juestion No.2 (12 marks)

The partical shown in Fig.(2) is of mass 20 kg and moving in a horizontal straight line with a Initial velocity of 10 m/s. An upward force F_{ψ} functioning in time is applied to it in a direction normal to the initial direction of motion. If the force F_{v} varies according to the graphical representation shown in Fig.(2). Determine the velocity of the partical when t=4 sec and its direction with respect to the force F_{v} . Suppose that the force does not change its directin.

Question No. 3 (12 marks)

Two smooth spheres A and B have initial velocities just before they collide as shown in Fig.(3). If they have masses m_A =5 kg and m_B =10 kg, determine their velocities just after impact, and Also find the loss in kinetic energy due to the impact if the coefficient of restitution e=0.6.

Question No. 4 (12 marks)

For the mechanism shown in Fig.(4), the crank OA rotates about a pin O with a constant angular speed of ω = 30 rad/s (in clockwise direction). If the length of the crank OA=6 cm and the connecting rod AB=18 cm, calculate the velocity and acceleration of the piston B.

Question No. 5 (10 marks)

A stepped disk, of mass M=30 kg and its radius of gyration 0.5 m, is attached to three springs of stiffnes K=1000 N/m each and a damper of C=50 N.sec/m and mass (m) of 5 kg is holding with inextended cord as shown in Fig.(5). What is the equation of motion for the system if the mass (m) is displaced with initial amplitude x and hence the disk is rotated a small angle Θ , in clockwise direction, and then released. Find also the natural frequency of the system. Given: R_1 = 0.4 m and R_2 = 0.6 m.

GOOD LUCK

With our best wishes

This exam measures the following ILOs			
Question Number	Q2 Q3 Q4	Q,	Q ₅
Skills	A 2 1-1 15-2 Knowledge & Understanding Skills	Intellectual Skills	Professional Skills